
Advanced Software
Vulnerability Assessment

The art and science of uncovering
subtle flaws in complex software…

Neel Mehta <Neel Mehta <nmehta@iss.netnmehta@iss.net>>

Mark Dowd <Mark Dowd <mdowd@iss.netmdowd@iss.net>>

Chris Spencer <Chris Spencer <cspencer@iss.netcspencer@iss.net>>

HalvarHalvar Flake <Flake <halvar@blackhat.comhalvar@blackhat.com>>

Nishad Herath <Nishad Herath <nherath@iss.netnherath@iss.net>>

mailto:halvar@blackhat.com

Overview
Multitude of contemporary documentation
addresses security vulnerability exploitation in
depth, yet none address the methodology
and techniques of vulnerability assessment
thoroughly, if at all.

Vulnerability classes and identification.
Methodology of assessment.
Tools of the trade.

Topics

Dangerous library/API functions.
Unsafe use of pointer arithmetic.
Subtle trust relationships.
Integer manipulation issues.

Methodology

Top down methodology.
Bottom up methodology.
Hybrid approach.

Top down approach
Start at the entry point and follow all code paths.

Pros:
Complete coverage of the codebase.
In depth understanding of the application functionality.

Cons:
Very tedious and time consuming.
Sometimes not feasible.
Potential waste of resources.

Bottom up approach

Pros:
Can potentially uncover bugs quickly.
Better utilization of resources.

Cons:
Potential to miss subtle issues and issues with wider coverage.
Usually, an in-depth understanding of the application
functionality is not achieved.
Potential to miss code paths that might have had issues.

Hybrid approach

Incorporates elements from both top down and bottom up
methodologies effectively according to the requirements.
Attempts to gain the advantages offered by the pervious
methods.
Attempts to maximize results with a minimal amount of
resources.
Streamlines the process and eliminates of reduces the impact of
the disadvantages of the previous approaches.
Targets the critical code paths and analyzes them in depth while
still maintaining a sufficient level of overall analysis.

Tracking

Tracking execution states is a helpful addition to
the methodologies described.
Requirements definition.
Desk checking.
Following and reverse engineering the
programmers logic and often, making educated
guesses about the programmer’s style of thinking.

Tools

Editors
Source Browsers
Automated auditors
Miscellaneous

Editors

VIM:
Syntax highlighting
Bracket matching
Tags

EMACS
PICO

Source Browsers

Source Navigator
Cscope:

1. Recursively search
2. Find any symbol definition, or use.
3. Function calls, or functions called.
4. Plugins

Cbrowser

Automated Auditing Tools

ITS4
SPLINT
Cqual

Miscellaneous

CVSWeb

Dangerous functions.

Unbounded memory copies such as strcpy(), strcat() etc.
Bounded memory copy functions.

Bounded memory copy functions.

strncpy() NULL termination problems.
Misleading size value in strncat().
strncat() doesn’t account for the trailing NULL.
Potential underflow problems when addressing the
trailing NULL issue.
Misuse of return values in *snprintf().

Remaining length issue.

char buf[1024];

…
strcpy(buf, “user entered: “);
strncat(buf, user_data, sizeof(buf));
…

Off-by-one.

char buf[1024];

…
strcpy(buf, “user entered: “);
strncat(buf, user_data, sizeof(buf) – strlen(buf));
…

Underflow issue.

char buf[1024];

…
strncpy(buf, user_data);
strncat(buf, sizeof(buf) – strlen(buf) – 1, more_data);
…

Pointer Arithmetic.

Looping Constructs.
Miscalculations.
Off-by one errors.

Looping constructs: ntpd

while (cp < reqend && isspace(*cp))
cp++;

if (cp == reqend || *cp == ',') {
buf[0] = '\0';
*data = buf;
if (cp < reqend)

cp++;
reqpt = cp;
return v;}

if (*cp == '=') {
cp++;
tp = buf;
while (cp < reqend && isspace(*cp))

cp++;
while (cp < reqend && *cp != ',')

*tp++ = *cp++; // here is the problem
if (cp < reqend)

cp++;
*tp = '\0';
while (isspace(*(tp-1)))

*(--tp) = '\0';
reqpt = cp;
*data = buf;
return v;

}

Looping constructs: lpd
if ((tmp = strtok(NULL, "\n\t ")) != NULL) {

.. does stuff ..
}
current_request = tmp_id;
tmp = NULL;

switch (buf[0]) {
...
does stuff here
...
case '\3': /* Transfer Data File */

...
df_list[file_no++] = strdup(name);
ACK(ofp);
break;

Miscalculations.

Sometimes when performing pointer arithmetic,
miscalculations can be made as to how much space
is left in a buffer. This can allow for malicious
attackers to sometimes write outside the bounds of
the destination buffer.
Subtle and difficult to detect.
For example, the BIND 8 TSIG issue discovered last
year.

Off-by-one: OpenBSD ftpd.
void
replydirname(name, message)

const char *name, *message;
{

char npath[MAXPATHLEN];
int i;

for (i = 0; *name != '\0' && i < sizeof(npath) - 1; i++, name++) {
npath[i] = *name;
if (*name == '"')

npath[++i] = '"';
}
npath[i] = '\0';
reply(257, "\"%s\" %s", npath, message);

}

Off-by-one miscalculation.

char buf[1024], *ptr = buf;
int len = sizeof(buf);

buf[1023] = ‘\0’;
strncpy(ptr, user_data, len - 1);
ptr += strlen(ptr) + 1;
len = &buf[sizeof(buf)-1] – ptr;
strncpy(ptr, more_user_data, len);

Excessive pointer increment.

char buf[1024], *ptr = buf;

ptr += snprintf(ptr, sizeof(buf), “%s”, user_data);
ptr += snprintf(ptr, sizeof(buf)-(ptr – buf), “%s”,

more_data);

Union Mismanagement

Basics: What is a union?
union {

int an_integer;
short a_short_integer;
char *a_pointer;

} u;

Security Implications

Mistaking one data member for another
Can occur in input processing routines
Type Confusion

Subtle trust relationships

Some subtle trust relationships exist between internal functional
units of software systems.
Server applications at times trust externally available
information that is indirectly related to the intended
functionality or infrastructure services which the client controls.
Server applications assume the intended client software is the
only client software that will access the server services.
In case of application errors, applications tend to trust the
integrity of it’s own address space at the point of graceful
termination or saving logging information.

Internal trust relationships

Many major operating systems contain
undocumented internal APIs that assume obscure
API parameters to be consistent between the client
and server subsystems. However, since the client
subsystems are directly modifiable by the client, the
trust can be broken and the server subsystem can be
exploited.
Shared codebase, shared development resources and
the same programmer mindset leads to implicit
assumptions and its only human to make
assumptions.

Trusting external information

Servers often trust indirectly related information
about the clients, where the information happens to
be in control of the client.
For example, Microsoft Exchange Server 5.5 trusts
the client IP address to resolve to a DNS name with
certain properties as most often the case with
legitimate real life clients.
In the recently released advisory, its demonstrated
how a client could violate this implicit trust (or
assumption on the part of the server) to exploit the
server and take complete control over the server.

Specific client assumption.

Many servers that utilize proprietary protocols
assume that the specific client software intended to
be used with the server application will be used to
communicate to the server.
Many assumptions or “mutual understandings” exist
which leads to non-thorough security coverage and
unsafe programming practices which could be
exploited.
For example, the Oracle TNS listener DoS and buffer
overflow vulnerabilities discovered last year.

Is safe really safe?
Attempts to be safe and robust which are not very well
researched and tested leads to being unsafe and vulnerable.
When an application handles an error (signal handlers,
exception handlers, exit routines, logging functionality) and
performs tasks after the error occurred, it is making an
assumption of the relative integrity of its own address space,
which is very ignorant to say the least.
Ideally, post-error processing should be handled by an out-of-
process address space entities on behalf of the application that
the fault occurred in.

Integer manipulation

Signed and unsigned integers
Different sized integers
Integer wrapping

Introduction

Usually 32 bit
Signed unless explicitly qualified with
the ‘unsigned’ keyword

16-bit signed 16-bit unsigned 32-bit signed 32-bit unsigned 64-bit signed 64-bit unsigned

min -32768 0 -2147483648 0 -9223372036854775808 0
max 32767 65535 2147483647 4294967295 9223372036854775807

18446744073709551615

Signed/Unsigned Issues

Negative integers for length specifiers
can occur if either the user supplies an
unchecked length, or a calculation is
made based on an unexpected value
Can be used to bypass maximum length
restrictions

Signed Bug Example
#define MAX_LEN 256
….
int datalen;
char buf[MAX_LEN];

datalen = get_int_from_socket();

if(datalen > MAX_LEN){
printf(“invalid data sent – data field too large”);
exit(-1);

}

if(read(sock, buf, datalen) < 0){
perror(“read”);
exit(errno);

}

Different Sized Integers

Integers of different sizes are
sometimes used during calculation
Implications of this could include
truncated values (32 bit -> 16 bit), sign
issues (32 bit -> 16 bit or vice versa)

Integer wrapping

Causing an integer to exceed maximum
boundary value, or decrease below the
minimum value

Example 1: Addition
unsigned int len;
char *str;

…

len = get_user_length();

if(!(str = (char *)malloc(len + 1))){
perror(“malloc”);
exit(errno);

}

memcpy(str, user_data, len);
…

Example 2: Subtraction
#define HEADER_SIZE 32
#define MAX_PACKET 256

int len;
char buf[MAX_PACKET], data[MAX_PACKET];

…
if((len = read(sock, buf, sizeof(buf)-1)) < 0){

perror(“read”);
exit(errno);

}

memcpy(data, buf+HEADER_SIZE, len-HEADER_SIZE);

Example 3: Multiplication
int num, i;
object_t *objs;
…

num = get_user_num();

if(!(objs = (object_t *)malloc(num * sizeof(object_t)))){
perror(“malloc”);
exit(errno);

}

for(i = 0; i < num; i++){
objs[i] = get_user_object();

}

Problems

Often there are problems involved in
exploiting such bugs
Large data copies often occur, or
Large amounts of data need to be
supplied (eg. strdup() type functions)

Solutions

Catching Segmentation Violations
Delivery of other caught signals
Structured Exception Handling (Win32)
Cleanup routines (deallocation of
objects)

Best Case Scenario

Integer is directly controlled by the user
A loop is entered for the data copy that
can be prematurely terminated
Premature termination of loop does not
result in immediate call to exit()

Integer Wrapping thoughts

The potential of exploitation of these
types of bugs has not been fully
realised
Applies to pointer types as well
Certain functions can be dangerous –
calloc(), new operator in C++ in some
implementations

Real Example 1: OpenSSH
Challenge-Response bug perfect
example of multiplication integer
overflow
Overflow causes incorrect data
allocation on the heap
We write past the end of the allocated
data with pointers returned from
packet_get_string

OpenSSH Example cont’d

We can write over a fatal_cleanup
function pointer with the pointer
returned from packet_get_string()
Premature termination of loop receiving
input calls fatal(), which calls the
function pointer which we overwrite

xdr_array() example:
c = *sizep;
if ((c > maxsize) && (xdrs->x_op != XDR_FREE)) {

return (FALSE);
}
nodesize = c * elsize;
if (target == NULL)

switch (xdrs->x_op) {
case XDR_DECODE:

if (c == 0)
return (TRUE);

*addrp = target = mem_alloc(nodesize);
…
break;
…

}
for (i = 0; (i < c) && stat; i++) {

stat = (*elproc)(xdrs, target);
target += elsize;

}

	Advanced Software Vulnerability Assessment
	Overview
	Topics
	Methodology
	Top down approach
	Bottom up approach
	Hybrid approach
	Tracking
	Tools
	Editors
	Source Browsers
	�Automated Auditing Tools
	Miscellaneous
	Dangerous functions.
	Bounded memory copy functions.
	Remaining length issue.
	Off-by-one.
	Underflow issue.
	Pointer Arithmetic.
	Looping constructs: ntpd
	Looping constructs: lpd
	Miscalculations.
	Off-by-one: OpenBSD ftpd.
	Off-by-one miscalculation.
	Excessive pointer increment.
	Union Mismanagement
	Security Implications
	Subtle trust relationships
	Internal trust relationships
	Trusting external information
	Specific client assumption.
	Is safe really safe?
	Integer manipulation
	Introduction
	Signed/Unsigned Issues
	Signed Bug Example
	Different Sized Integers
	Integer wrapping
	Example 1: Addition
	Example 2: Subtraction
	Example 3: Multiplication
	Problems
	Solutions
	Best Case Scenario
	Integer Wrapping thoughts
	Real Example 1: OpenSSH
	OpenSSH Example cont’d
	xdr_array() example:

